NATIONAL NUTRITION MONITORING BUREAU

REPORT

For the period ending 31 August 1974

NATIONAL INSTITUTE OF NUTRITION Indian Council of Medical Research Hyderabad-500 007

```
    A National Nutrition Monitoring Bureau (NNMB) was
set up by the Indian Council of Medical Research in June 1972
with the National Institute of Nutrition as the Central
Reference Laboratory and nine regional units, one in each of
the States of Andhra Pradesh, Gujarat, Karnataka, Kerala,
Madhya Pradesh, Maharashtra, Tamil Nadu, Uttar Pradesh and
West Bengal. The objectives, organisational pattern and the
plan of work of the Bureau have been already reported (Plan of
operation - NNMB). Data on the dietary intake and nutritional
status of representative segments of the population in various
parts of the country, using standardized methods, have been
collected. Information regarding the dietary intakes included,
those of families as well as of individuals. Clinical and
anthropometric status were also assessed. In addition, data
on income and occupational status of the population covered
were also obtained.
```

Data received till the end of 1974 from different regional units with respect to rural households have been analysed and the results presented here.

However, in the interpretation of these results, the following two points have to be borne in minds

1. The districts covered in all the States did not belong to the same 'developmental' category (as per the criteria given in the plan of operation of NNMB, and comparisons between States is not, therefore, strictly valid; and
2. The coverage of households in different States was not uniform with respect to season - a factor known to modify the pattern of diet and nutritional status.

COVERAGE:

A total of 5,836 households have been covered, 4141 (71 \%) from rural areas and the rest from urban localities (Table 1). The distribution of households according to daily per capita income showed that a majority (61.5%) had an income of less than a rupee per day and about 25 \% had an income of Rs. 1 - 2, while 11.1 \% had between Rs.2/- and 5/- per day. Only a small per cent of households. ~ \%) had a daily income of Rs.5/or more per person which were not included in the present analysis (Table 2).

CONSUMPTION PATTERN - FOOD STUFFS

Cereals and millets: Major millets consumed were jowar, ragi and bajra. The mean consumption of cereals and millets was highest in Karnataka and lowest in Kerala (Table 3), with other States in the following order: Madhya Pradesh, Andhra Pradesh, Vest Bengal, Gujarat, Tamil Nadu, Uttar Pradesh and Maharashtra. There were no significant income trends in the consumption pattern of cereals and millets in any of the States, except in Kerala where the consumption of rice increased with increasing income at the expense of tapioca.

Pulses: 1 The mean consumption of pulses was far below the recommended allowance of 70 g . in all States except in Uttar Pradesh and Madhya Pradesh. It was lowest in Kerala about $15 \mathrm{~g} / \mathrm{day}$. With increasing income, the pulse consumption Increased in almost all the States.

```
Vegetables: Consumption of green leafy vegetables was low in all the States, it being less than \(10 \mathrm{g}\). , except in West Bengal (50 g), Madhya Pradesh and Maharashtra (20 g). The consumption of other vegetables was higher than that of green leafy vegetables in all States, it increasing with rising income.
```

Roots and tubers were consumed as vegetables in all States except Kerala, where they formed part of the staple. The trends of consumption were similar to those of other vegetables.

Milk and milk products: Milk intake increased with increasing income in all States. The mean was highest in Gujarat.

Fats and oils: There was an income gradient in the consumption of fats and oils. As with milk, the highest consumption was observed in Gujarat.

Sugar and jaggery: The mean consumption levels were low in all States except in Gujarat where the mean intake was more than the recommended allowance of 30 g . in all income groups.

CONSUMPTION PATTERN - NUTRIENTS

Based on family diet surveys, the average nutrient Intakes in the different States (per consumption unit per day) according to per capita income were calculated. These have been presented in Table-4.

Proteins: The highest mean intake of protein was in Madhya Pradesh and the lowest in Tamil Nadu. Except in Karnataka, Andhra Pradesh and Maharashtra, in the other States Intake of protein showed differences between the extreme income groups (i.e. per capita income of less than a rupee and above Rs.2/- per day). A definite stepwise income trend was observed only in Kerala.

Calories: In the income group below Re.l/- per caput per day, Kerala had the lowest calorie intake - 1750, closely followed by Tamil Nadu, Uttar Pradesh, Maharashtra and West Bengal and the highest in Gujarat (2365), followed by Karnataka and Madhya Pradesh. However, in the group with per capita income of Rs.2-5 per day, the pattern was different, Kerala and Karnataka having highest intakes closely followed by Gujarat, West Bengal and Madhya Pradesh forming a cluster. Uttar Pradesh, Andhra Pradesh, Tamil Nadu followed with Maharashtra registering the lowest intake.

In general, the mean intake of calories exhibited an upward trend with income.

It is gencrally held that in poor income groups, intake of calories and proteins run parallel. The data presented hero suggest that this is not always so. Madhya Pradesh had the highest mean protein intake of 87 g . with a calorie intake of 2600 while in Kerala the consumption of calories was highest - 2850, with only 73 g. of protein. Also in Karnataka, protein intake was lower - 66 g. and yet the calorie intake was similar - 2840. Temil Nadu and Gujarat

```
had similar intakes of protein - 58 g . , but widely different
levels of calorie Intakes - 2260 and 2600 respectively. This
is mainly due to differences in the type of cereal or millet used and replacement of tapioca with cereals as in the case of Kerala. Also, the level of fat and sugar intake influenced this relationship.
```

Calcium: The intake of calcium increased with increasing income in all States except in Karnataka, Andhra Pradesh and Maharashtra. Highest intakes were in Karnataka in all Income groups, the chief source of the nutrient being ragi in the low income groups and milk and its products in the higher income groups.

Iron: Intakes of iron were lowest in Kerala and Tamil Nadu. In the other States, the average intake was around the recommended level of 30 mg .

Vitamin A: Intakes of vitamin A were far below the recommended value of 750 aug in alI States, especially in the lower income groups. The highest values were found in West Bengal and the lowest in Kerala. In most States, intakes tended to increase with income.

PROTEIN-CALORIE ADEQUACY
(A) Households:-

To determine the adequacy or otherwise of intakes of proteins and calories, the following procedure was adopted. Intakes in any household wherein the value for proteins and calories fell below the mean - 2SE of the recommended
allowances, were considered as Inadequate. All households were thus classified into different categories of proteincalorie adequacy and inadequacy. Since the numbers of households belonging to the per capita income groups of Rs. 1-2 and 2-5 per day were small, for this purpose, they were pooled and only two income categories were recognised - families with per caput income below Re.l/- per day and those with more than this amount. The percentage distribution of the households according, to protein-calorie adequacy in these two income groups (arbitrarily called as very low and low) is shown in Table 5.

Calorie and protein adequacy: In the very low income group, the proportion of households having adequate levels of both protein and calories ranged from a low 20.6% in Kerala to a high 57.8 \% in Gujarat.

Calorie inadequacy: Calorie inadequacy with or without associated protein inadequacy was observed in all the States. In the very low income group, the highest percentage of such families was in Kerala (76 \%) and the lowest in Gujarat and Madhya Pradesh (42\%). In the low income group, Tamil Nadu had the highest per cent of such families (26 \%) and Gujarat the lowest (1,4 \%). ' Calorie inadequacy per se i.e. where protein was adequate, was seen in all States in both income categories. The percentage of such families ranged from 22\% to 60% in the very low income group and from 14 to 46 in the low income group in different States. Also in most of the

States, these figures were higher in the very low income group.

Protein and calorie inadequacy: Protein inadequacy was invariably associated with calorie inadequacy in both income categories in all States except in Kerala, whore a small percentage of households (1.9 \%) of the very low income category had protoin inadequacy with calorie adequacy. In most States, the percentage of households where both nutrients were inadequate was consistently higher in the very low income group compared to low income group. In the very low income group, Kerala had the highest percentage (55\%) in this category and Madhya Pradesh the lowest (2 \%). In the low income group, the corresponding figures were 26% for Tamil Nadu and 1.4\% for Gujarat,
(B) Individuals: --

To determine the adequacy or inadequacy of an individual' intake, the procedure followed was similar to that used in the case of household dietary surveys except that twice the standard deviation of the recommended intakes was employed instead of twice the standard error values. The pooled distribution of individuals studied in each State according to their protein-calorie adequacy is presented in Table 6.

Protein and calorie adequacy: In almost all States except Tamil Nadu, a little more than 50 o of individuals had adequate Intakes of both protein and calories.

Combined protein and calorie inadequacy: This was observed in all States, Madhya Pradesh having the lowest figure of 1.3% and Andhra Pradesh having the highest figure of 19\%.

Protein inadequacy was associated with calorie Inadequacy in all States excepting in Kerala, Tamil Nadu and Karnataka where an occasional individual consumed inadequate amounts of protein but adequate amounts of calories.

Calorie inadequacy with or without protein inadequacy was observed in 20% of individuals in Madhya Pradesh and 56* of individuals in Tamil Nadu. In the others, they ranged from 24\% to 50\%.

In general, the distribution of individuals by protein calorie adequacy seemed to follow a pattern similar to that observed in case of families.

NUTRITIONAL STATUS - CLINICAL

A total of 19,22 subjects were examined for the presence of nutritional deficiency signs; in addition their body measurements were taken. Of these 597 were infants (below 1 year), 2,410 were pre-school children (1-5 years), 4153 were of school-going age (5-12 years) and 4,476 belonged to the age group of 12-21 years. The rest were adults. The unitwise percent prevalence of various nutrition deficiency signs in each of these age categories is presented in Annexure - I.

Most commonly observed nutritional disorders were : Protein-calorie malnutrition (PCM) : vitamin A and B complex deficiency and deficiency of essential fatty acids. The signs of $P C M$ were seen more frequently in infants and preschool children, while those of vitamin deficiencies in children of school age and adolescents.

Protein-calorie malnutrition:

Clinical cases of marasmus/emaciation and kwashiorkor were seen in almost all the States. Prevalence of marasmic type of PCM was common in infants (under 1 year), while in pre-school children both types of PCM namely, marasmus and kwashiorkor, were seen : their percent prevalence ranged from 0.4 to 9.7.

Other deficiency signs:--

Varying degree of occular signs of vitamin A deficiency like xerosis, bitot spots, and orolingual lesions of B complex deficioncy such as, angular stomatitis, cheilosis, glossitis etc., were observed in almost all the States. Prevalence of phrynoderma was seen in five out of nine States. Thyroid enlargement (Goitre):--

Enlargement of thyroid gland was observed only in two States ; Uttar Pradesh (2.0\%) and West Bengal (0.3\%). Dental Caries:--

Dental caries though not of nutritional significance, was observed in all the States. The highest prevalence of 14.7%
was seen in Kerala, while the lowest (0.4\%) was in Andhra Pradesh.

NUTRITIONAL STATUS - ANTHROPOMETRY

Growth pattern:-

Mean values of anthropometric measurements - height, weight, arm circumference and skinfold at triceps by ago and sex are presented in Annexure II. In general, heights and weights of children and adolescents were lower than those reported by ICMR. The mean weights of adults was lower than but
that in the ICMR study/their heights were comparable. This was seo in all States except Andhra Pradesh, Madhya Pradesh and Wst Bengal.

Prevalence of undernutrition in pre-school children using
anthropometry : (Annexure III)

Weight for age:

When weight for age was used as a criterion for quantifying undernutrition (Gomez classification), on an average, about 75\% of children were found to suffer from either moderate (54\%) or severe (21\%) degree of undernutrition. Only 4\% of the children were found to have body weights more than or equal to 90% of the standard (normal). While there wore no marked differences, between the States in this regard, prevalence of severe forms of undernutrition was similar in the states of Kerala, Tamil Nadu, Kamataka and Maharashtra; in the remaining States it was slightly higher.

Weight/Height ${ }^{2 \times 100}$:

The index Wt/Ht ${ }^{2}$ has been shown to be age independent and the index value of 0.15 has been suggested as the cut off point for categorising children into the "normals'' and the "undernourished". According to the criterion forty four (44\%) per cent of children surveyed in various States were ''normals" (Wt/Ht ${ }^{2} \geq 0.15$), while the remainder fifty five (55\%) per cent were "undernourished" (having index value of less than 0.15).
The proportion of severely malnourished children (<0.13) was found to be highest in West Bengal (29.6\%) and lowest in Madhya Pradesh (3.6\%). In the States of Karnataka, Andhra Pradesh, Maharashtra and Madhya Pradesh prevalence of the severe degree undernutrition was of the same order.

Table - 1 - 1974
NNMB -COVERAGE OF POPULATION

Table - 2

NNMB - PER CENT DISTRIBUTION OF HOUSEHOLDS ACCORDING TO DAILY PERCAPITA INCOME

Income category	Less than Re. 1/-	Rs. 1-2	Rs.2-5	Rs. 5 and more
Per cent of house- holds	61.5	24.9	11.1	2.5

Table - 3
NNMB - AVERAGE INTAKE OF FOODSTUFFS (PER CONSUMPTIONUNIT PER DAY) ACOORDING TOPER

State	Cereals and millets			Pulses			Leafy vegetables			Milk and milk products			Fats and oils			Sugar and jeggary		
	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Keral a	$\begin{gathered} 252 \\ (107) \end{gathered}$	$\begin{aligned} & 429 \\ & (23) \end{aligned}$	$\begin{array}{r} 465 \\ (10) \end{array}$	3	21	25	2	3	1	26	77	191	6	10	21	9	15	29
Tamil Nadu	$\begin{gathered} 472 \\ (198) \end{gathered}$	$\begin{aligned} & 429 \\ & (37) \end{aligned}$	$\begin{aligned} & 455 \\ & (21) \end{aligned}$	24	35	52	4	1	15	16	29	165	7	10	19	5	15	21
Karnataka	$\begin{gathered} 536 \\ (138) \end{gathered}$	$\begin{aligned} & 615 \\ & (40) \end{aligned}$	$\begin{aligned} & 613 \\ & (21) \end{aligned}$	30	32	28	2	2	4	50	82	162	4	10	15	20	43	49
Andhra Pradesh	$\begin{array}{r} 542 \\ (246) \end{array}$			18	43	47	7	2	7	19	89	119	4	13	15	6	15	24
Maharashtra	$\begin{aligned} & 438 \\ & (59) \end{aligned}$	$\begin{aligned} & 493 \\ & (25) \end{aligned}$	$\begin{array}{r} 366 \\ (18) \end{array}$	41	47	63	17	25	8	41	68	105	9	14	20	21	27	32
Gujarat	$\begin{array}{r} 498 \\ (285) \end{array}$	$\begin{gathered} 507 \\ (126) \end{gathered}$	$\begin{aligned} & 479 \\ & (65) \end{aligned}$	23	40	33	3	4	2	151	188	303	16	21	30	47	55	62
Madhya Pradesh	$\begin{array}{r} 565 \\ (149) \end{array}$	$\begin{gathered} 554 \\ (153) \end{gathered}$	$\begin{aligned} & 565 \\ & (60) \end{aligned}$	53	71	78	18	14	28	32	58	141	4	4	11	12	13	28
West Bengal	$\begin{array}{r} 519 \\ (230) \end{array}$	$\begin{gathered} 643 \\ (94) \end{gathered}$	$\begin{aligned} & 528 \\ & (21) \end{aligned}$	24	30	38	56	75	56	9	42	154	5	12	23	9	19	35
Uttar Pradesh	$\begin{array}{r} 442 \\ (62) \end{array}$	$\begin{aligned} & 429 \\ & (38) \end{aligned}$	$\begin{aligned} & 467 \\ & (15) \end{aligned}$	46	89	72	3	*	*	68	100	202	4	6	11	14	25	29
A: Per capita income of less than Rs .1/- per day. B : Per capita income of Rs.1/- to Rs. 1/- per day.																		
C	Per capita income of Rs.2/- to Rs .5/- per day.												ss th	$1 \S \mathrm{~m}$				

Table - 4

	Protein		(g.)	Calories			Calcium		(mg)	Iron		(mg)	Vitamin		A	
					C											
	A	B C						A B	B C		A	B C		A	B	C
Kerala	38.9	54.9	72.9	1756	2394	2856	616	627	993	17.6	24.4	29.2	106.7	171.9	397.7	
Tamil Nadu	45.0	44.4	57.4	1877	1898	2268	457	400	588	24.9	21.6	25.5	134.8	130.3	322.2	
Karnataka	64.1	65.5	66.5	2317	2678	2841	1018	918	989	41.1	38.2	36.7	184.4	194.	259.7	
Andhra Pradesh	622	60.4	58.5	2147	2300	2318	405	513	472	30.8	30.9	27.6	232.1	222.	233.7	
Maharashtra	60.2	71.1	58.9	1936	2274	1957	458	456	414	31.1	35.9	25.3	296.2	397.6	228.5	
Gujarat	68.4	76.1	76.2	2365	2588	2675	539	635	803	31.2	33.4	32.9	300.4	366.8	451.5	
Madhya Pradesh	76.2	78.7	86.9	2300	2360	2620	366	400	619	38.5	37.4	39.7	344.4	501.3	617.8	
West Bengal	52.3	65.9	69.0	2000	2611	2661	364	556	692	29.7	38.2	33.4	533.4	740.7	645.4	
Uttar Pradesh	65.7	74.7	78.4	1907	2117	2388	401	492	667	29.2	31.6	29.8	191.3	233.	636.0	

[^0]Table - 5
NNMB - PERCENT DISTRIBUTION OF HOUSEHOLDS ACCORDING TO PROTEIN-CALORIE

State	"Very Low" Income Group (Percapita income of less than Re.1/per dav						"Low" income group(Percapita income of Rs. $1-5 /-$ per day)					
	$\begin{aligned} & \text { PI } \\ & \text { CI } \end{aligned}$	$\begin{gathered} \mathrm{PI} \\ \mathrm{CA} \end{gathered}$	$\begin{gathered} \text { PA } \\ \text { CI } \end{gathered}$	$\begin{aligned} & \text { PA } \\ & \text { CA } \end{aligned}$	PI	CI	$\begin{aligned} & \mathrm{PI} \\ & \mathrm{CI} \end{aligned}$	$\begin{gathered} \text { PI } \\ \text { CA } \end{gathered}$	$\begin{gathered} \text { PA } \\ \text { CI } \end{gathered}$	$\begin{aligned} & \text { PA } \\ & \text { CA } \end{aligned}$	PI	CI
Kerala	55.1	1.9	22.4	20.6	57.0	76.4	16.3	-	14.6	68.3	17.1	31.7
Tamil Nadu	37.0	-	32.0	31.0	37.0	69.0	25.8	-	29.0	45.2	25.8	54.8
Karnataka	10.3	-	33.1	56.6	10.3	43.8	7.9	-	20.6	71.5	7.9	28.5
Andhra Pradesh	9.8	-	33.6	51.6	9.8	43.4	14.2	-	23.3	57.5	14.2	42.5
Maharashtra	15.2	-	42.4	42.4	15.2	57.6	8.9	-	44.4	46.7	8.9	53.3
Gujarat	6.0	-	36.2	57.8	6.0	42.2	1.4	-	26.4	72.2	1.4	27.8
Madhya Pradesh	2.0	-	40.3	57.7	2.0	42.3	1.8	-	26.8	71.4	1.8	28.6
West Bengal	32.3	-	23.3	44.4	32.3	55.6	7.1	-	22.3	70.6	7.1	19.4
Uttar Pradesh	3.3	-	60.0	36.7	3.3	63.3	3.2	-	46.0	50.8	3.2	49.2
								-				

[^1]Table - 6
NNMB - PER CENT DISTRIBUTION OF INDIVIDUALS ACCORDING TO PROTEIN-CALORIE

State	Number of individuals surveyed	PI CI	PI CA	PA CI	PA CA	PI	CI
Kerala	226	16.81	2.65	11.50	69.04	19.47	28.31
Tamil Nadu	349	15.47	0.57	40.40	43.56	16.04	55.87
Karnataka	133	5.26	0.75	21.05	72.94	6.01	26.31
Andhra Pradesh	373	19.03	-	30.83	50.14	19.03	49.86
Maharashtra	113	8.85	-	35.40	55.75	8.85	44.25
Gujarat	476	4.20	-	20.38	75.42	4.20	24.58
Madhya Pradesh	615	1.30	-	19.02	79.68	1.30	20.33
West Bengal	402	11.94	-	30.10	57.96	11.94	42.04
Uttar Pradesh	129	3.10	-	23.26	73.64	3.10	26.36

PI: Protein Inadequacy
Cl : Calorie Inadequacy
NNMB－Percentage prevalence of deficiency signs－Infants

Stat	Smic		Smis	mam	\％	ajamet	\％	bin	
	－${ }_{\text {g．}}$	${ }_{\text {m，}}$	${ }_{2.3}^{2 .}$	9.4	${ }_{\text {\％6，}}{ }^{80}$	$\stackrel{108}{8.5}$	${ }_{\text {gio }}^{1.0}$	\％，6	$\xrightarrow{20.0}$
Stan	二	I．${ }^{\text {a }}$	－	$=$	$=$	－0．	－	＝	－
mem	－	…	$\stackrel{3}{3.0}$	－3	\cdots	\cdots		$\stackrel{1}{4}$	\cdots
	－	${ }^{\text {8，}}$	－	\cdots	${ }^{13.3}$	．－．	1.7	－－	－
		\cdots		1.3		\ldots	0.8	－－	¢． 2
	－－	－	－	－	\cdots		．．	－	
Satataid	－	－	－－	2.0	－－	－	0.8		16.7
mo．stom	二	－	－－	－	－	－		－	－－
，interem	－	－	\cdots		－	\cdots		－－	－－
	－	－	－	\cdots	－	\cdots	\cdots	\cdots	\cdots
\％etire meat	二…	\cdots	－－	\cdots	－	－	\cdots	\cdots	\cdots

NNMB - Percentage prevalence of deficiency signs - 5-12 years

ANNEXURE-II
nnmb - mean anthropometric measurements by age and sex - kerala

"er	-3is	\pm	\square	4	\#-	\%	춘	$\stackrel{\text { \% }}{ }$	E
\cdots	\%	\%	\%:9,	\%	\%,0	\cdots	0		
\%	\%	\cdots	\%o,	\%	\cdots	\cdots	\cdots	1:\%	:
\%	\%.:	\cdots	O,	$\stackrel{\square}{\sim}$	\cdots	\cdots	\cdots	$\%$,
\%	\%,	\%	\%	\%		\%:	\cdots	\because	\%
\%,	,	\cdots	,	"	\%	\cdots	\cdots	\%	
\cdots	\ldots	\%.:	:-	:	\%.	\cdots	\cdots	\%.	-
\%	\%	nes	,	"		\cdots	nim	\cdots	:
,	\%	\%,0	\cdots	\%		\cdots	\%	\%.	\%
,	ma	2.,	\%oid	\cdots		2.	\%.0.	\cdots	¢
\cdots	\cdots	\%	\%	\%		200	,	\cdots	.
,	\cdots	\cdots			1-.		\%		
vas	\%	$\stackrel{3}{m, 0}$	\%:	边	, .i.	\cdots	\ldots		

NNMB - MEAN ANTHROPOMETRIC MEASUREMENTS BY AGE AND SEX - KARNATAKA

N	Height (cm)	MALES			Age in years	$\begin{aligned} & \text { Height } \\ & \text { (cm) } \end{aligned}$	F EM ALES			
		$\begin{aligned} & \text { Weight } \\ & (\mathrm{cm}) \end{aligned}$					Weight (kg)		Skinfold at Triceps (mm)	x
11	73.3	7.7	12.7	9.3	01	70.7	7.4	12.8	9.7	11
11	77.0	8.7	13.2	9.2	02	77.4	8.9	12.8	8.5	11
15	86.2	11.1	13.9	9.6	03	85.1	10.9	13.7	9.4	16
21	93.5	12.8	14.2	8.3	04	92.7	12.4	14.0	8.7	18
19	101.4	14.5	14.5	8.3	05	96.9	12.9	13.9	9.6	22
26	106.3	15.1	14.1	7.3	06	104.6	15.0	14.6	8.8	23
22	112.6	17.9	15.3	7.3	07	110.0	16.7	14.9	8.3	7
31	118.2	18.9	14.9	6.9	08	117.8	18.8	15.4	7.5	23
13	120.3	19.4	15.0	5.9	09	123.8	20.8	15.8	7.2	20
22	128.1	23.7	16.2	7.1	10	129.2	24.1	16.4	7.4	25
19	129.2	24.0	16.5	6.6	11	133.2	24.9	16.9	7.8	13
40	135.7	27.0	17.1	6.4	12	138.9	29.0	17.9	7.6	22
20	140.8	29.8	18.3	5.5	13	142.1	31.3	18.9	9.4	16
17	148.5	33.3	18.4	5.2	14	148.7	37.3	20.4	9.3	20
15	153.6	36.9	19.3	5.5	15	152.7	40.5	21.6	10.0	18
13	152.3	37.7	19.9	5.4	16	153.5	41.7	21.9	10.6	18
14	161.2	43.8	21.0	5.6	17	148.6	40.4	20.9	10.0	7
20	162.1	45.3	21.8	6.3	18	151.6	42.8	22.0	10.7	14
11	164.2	47.4	22.4	6.0	19	149.5	41.5	21.3	11.0	6
63	163.7	48.3	23.2	6.0	20-25	150.9	41.3	21.7	10.7	66
42	164.4	50.4	24.0	6.0	25-30	151.3	42.3	22.1	9.6	53
33	164.6	50.0	23.8	6.1	30-35	151.9	42.5	22.3	9.5	35
45	163.0	48.7	23.4	5.9	35-40	151.0	41.3	21.7	9.4	37
28	165.1	50.5	23.3	5.5	40-45	149.8	42.4	22.2	9.5	26
27	164.3	48.6	23.3	5.9	45-50	150.2	42.2	22.0	9.8	27
16	163.2	45.0	21.4	3.6	50-55	150.9	40.8	22.0	9.0	27
16	162.5	44.2	21.3	4.9	55-60	151.7	43.6	22.7	10.5	6
42	160.3	45.7	22.1	6.2	≥ 60	148.8	38.9	21.1	7.9	37

nNmB - MEAN anthropometric measurements by age and sex - andhra pradesh

\#	$\operatorname{Hot}_{(\cos)}$			$\begin{gathered} \text { Skinfold } \\ \text { Tricep } \\ \text { (E) } \end{gathered}$	ycein		$\begin{aligned} & \text { Yelght } \\ & \text { (ry) } \end{aligned}$		$\begin{aligned} & \text { skiniond } \\ & \text { Txicept } \\ & \text { (110) } \end{aligned}$	W
21	72.4	7.3	12.6	6.3	01	70.5	7.5	12.2	6.6	32
30	77.0	B. 8	12.7	6.5	02	77.3	9.19	12.9	7.6	25
40	82.6	10.3	13.5	7.7	03	83.3	10.4	13.6	7.8	37
63	92.1	12.5	13.7	6.9	04	90.4	11.9	13.9	7.4	47
39	96.7	13.6	14.2	6.6	05	96.3	13.1	14.0	6.7	39
47	103.4	14.7	13.8	5.7	06	100.8	14.1	14.1	6.2	62
46	110.3	16.5	14.2	4.7	07	111.8	17.4	15.0	6.0	34
47	115.9	18.5	14.7	5.1	98	115.3	18.8	14.7	5.\%	60
20	122.6	20.8	15.6	5.1	09	120.8	20.1	15.4	5.6	37
52	126.4	22.4	15.6	4.7	10	123.9	22.2	16.0	5.4	42
35	130.0	- 24.0	16.2	4.7	11	133.3	25.5	17.0	6.2	26
59	134.4	26.1	16.6	4.5	12	138.9	28.9	17.8	3.6	41
24	139.1	28.5	17.7	5.7	13.	142.9	32.4	19.3	6.1	22
41	143.9	30.8	17.8	4.7	14	145.6	25.7	20.1	8.t	19
14	147.3	39.6	18.6	3.6	15	143.8	37.2	20.6	9.2	. 9
38	152.0	39.0	20.2	5.0	16	146.6	36.5	20.3	0.1	29
36	156.3	41.3	20.7	4.5	17	149.1	42.3	21.3	9.2	19
42	160.4	46.2	22.7	4.9	18	150.2	42.2	21.6	7.3	22
24	158.7	45.9	23.0	4.4	19	145.4	35.4	20.0	10.8	2
74	160.1	47.1	23.0	4.5	20-25	149.0	41.9	21.6	8.0	67
62	162.1	48.3	22.8	4.6	25-30	149.8	41.9	21.9	7.7	115
85	161.9	49.5	23.6	5.0	30-33	130.3	41.4	24.5	7.2	103
34	163.0	49.2	23.4	4.6	35-40	149.6	4. 4.3	21.3	6.0	se
54	159.5	48.5	23.7	5.7	$40-45$	147.8	41.9	22.4	8.1	30
67	860.9	48.2	22.9	5.2	45-50	149.2	44.6	22.7	9.2	40
38	161.t	50.7	23.5	5.9	30-35	149.2	41.0	21.2	7-0	27
28	162.5	51.2	23.2	5.9	55-60	143.0	40.3	20.5	7.3	16
48	156.9	44.3	21.1	4.5	750	$1+6.4$	37.2	20.5	6.1	47

NNMB - MEAN ANTHROPOMETRIC MEASUREMENTS BY AGE AND SEX - MAHARASHTRA

N	$\begin{aligned} & \text { Helent } \\ & \text { (om) } \end{aligned}$	$\begin{gathered} \text { Welsht } \\ (k g) \end{gathered}$	Arm circumforence (ca)	$\begin{gathered} \text { Skinfold } \\ \text { at } \\ \text { Tricepa } \\ (m \mathrm{~m}) \end{gathered}$	Age yonim	$\begin{gathered} \text { Heignt } \\ \text { (cn) } \end{gathered}$	$\begin{aligned} & M \in h_{E} t \\ & \left(k_{E}\right) \end{aligned}$	A파뭄 circta= terence (cm)	$\begin{gathered} \text { Byinfele } \\ \text { Et } \\ \text { (eop) } \end{gathered}$	N
18	71.3	8.2	11.8	9.6	01	71.3	7.9	11.7	8.9	15
10	78.8	9.8	12.8	9.2	02	77.2	9.4	12.5	11.7	15
18	83.8	11.2	12.9	11.2	03	83.4	10.6	12.9	11.8	12
17	92.1	12.4	13.2	9.2	04	89.8	13.6	13.3	11.1	16
13	99.0	14.0	13.4	8.2	05	99.6	14.9	14.5	11.7	6
10	105.0	15.5	13.4	7.2	06	104.0	15.7	14.2	8.8	14
16	109.2	17.7	14.0	8.1	07	105.4	15.8	14.1	8.1	8
12	115.8	17.4	13.9	6.1	O8	118.9	19.6	14.9	7.3	11
12	119.1	20.6	14.9	6.6	09	149.3	19.7	15.2	8.3	14
16	126.1	23.4	15.8	5.3	10	124.1	22.1	15.6	9.4	17
11	127.5	23.1	16.0	7.5	11	136.2	27.3	17.5	9.4	11
18	135.4	25.3	15.9	6.6	12	135.3	28.1	17.1	9.7	16
15	138.1	28.1	16.4	7.4	13	138.1	20.9	17.8	8.8	18
15	140.9	31.0	17.3	7.1	14	145.9	35.3	19.4	12.2	11
14	148.4	33.1	17.7	5.8	15	144.4	36.3	$21.5 *$	13.0	5
14	156.2	40.5	20.0	8.4	16	147.3	37.2	20.4	10.9	12
14	159.0	43.9	21.3	6.7	17	151.0	41.6	22.1	16.2	6
13	139.8	45.9	22. 1	6.8	18	153.2	42.8	21.5	14.0	4
11	t64.4	48.0	22.6	6.7	19	147.2	41.0	22.0	14.2	5
25	161.9	46.2	22.6	6.3	20-25	151.2	42.3	21.0	11.9	30
28	161.0	47.9	22.7	6.6	25-30	149.6	41.0	21.2	10.8	26
19	163.0	49.6	23.1	6.5	30-35	149.2	41.4	21.7	12.3	35
26	164.0	52.7	24.0	$B .7$	$35=40$	147.8	41.3	21.7	11.3	23
23	163.1	47.9	22.5	6.8	$40-45$	147.2	40.7	21.7	11.9	17
21	160.3	48.2	23.1	7.7	45-50	148.3	38.3	21.1	\$2.0	21
9	159.4	50.0	23.3	7.1	50-35	148.1	36.4	20.1	9.1	10
17	162.6	50.6	23.6	8.9	55-60	148.3	37.3	20.0	8. ${ }^{8}$	9
29	160.2	47.0	22.1	7.4	$\geqslant 60$	147.8	39.3	20.8	10.1	31

"ame	Mat	寺:	${ }_{\text {cosem }}$	\%	"tar	"140	शa	\%	
$\xrightarrow{2 \times .0}$	ation	10.0	\cdots	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ne, }}{\substack{0,9}}$	\because	${ }_{\text {R }}^{12,0}$	${ }^{1.7}$	\%
\cdots	${ }^{10.2}$	${ }^{12.6}$	8.7	\%	*2. 2	${ }^{10.2}$	5.	\cdots	
no.e	${ }^{10.7}$	\ldots	$\stackrel{4}{ }$	\%	\%.1	\ldots	\ldots	8	
1	\cdots	\ldots	,	${ }_{0}$	\%os	18.0,	\ldots	\cdots	
(1.0.		,	\%	$\stackrel{\circ}{\circ}$		20.1	ss.r	0.3,	
	ne.	$\stackrel{18,2}{18,2}$	\%	$\stackrel{10}{*}$	\%os.	and	\%,	$0 \cdot$,	
(10.2,	$\xrightarrow{2.0 .6}$	\%,	$\stackrel{\square}{1,2}$	\%	,	cois	,	0	
\%10,	n,	\%,\%	,	is	\ldots	$\stackrel{\text { n.t }}{n, 0}$	\%,	\%.,	
\% ${ }^{198.2}$	${ }_{\text {a }}^{0.0}$	(e.7	80	\cdots	\%7,	$\stackrel{1}{3}$	nit	\%	
\% ${ }^{\text {coser }}$	\%.0.	${ }^{22.0}$	\cdots	\cdots	\%18.	\cdots	\%	\%,	
\%	48	\%,	\cdots	38	\% 18.		${ }^{2} .6$	\ldots	
10,		2,0,	\cdots	\%-25	\%	2.	\ldots	\%,	
	${ }_{\text {a }}$	20,	\cdots	\%	\%	0.6	\%	\cdots	
${ }_{\text {coses }}$	\%	\%.0.0.0.	\cdots	\%	,	8	${ }_{2}^{2.2}$	${ }_{\text {jo, }}^{12,0}$	
$\stackrel{1}{10,0}$	and				\%	\%	23.2,	\%.:'	

nNmb - MEAN anthropometric measurements by age and sex - madhya pradesh

MALES					$\begin{aligned} & \text { Age in } \\ & \text { years } \end{aligned}$	Height (cm)	Weight (kg)	```FEMALES Axm circum- ference (cm)```	```Skinfold at Tricepe (mm)```	
N	Height (cm)	Weight (kg)	```Arm circum- ference (cm)```	```Skinfold at Triceps (mm)```						N
56	69.9	7.6	12.4	6.6	01	69.7	7.5	12.0	6.5	50
47	77.5	9.4	12.6	6.7	02	76.6	9.0	12.6	6.3	43
66	82.6	10.7	13.0	6.6	03	83.0	10.9	12.9	6.1	77
89	90.5	12.2	13.5	6.3	04	91.1	12.3	13.6	6.4	71
82	99.7	14.3	13.9	6.2	05	100.7	14.8	14.0	5.9	41
80	105.2	15.9	14.1	5.5	06	107.6	16.3	14.3	5.4	55
56	111.3	17.5	14.4	5.6	07	109.9	16.8	14.5	5.2	51
91	116.9	19.4	14.8	5.2	08	117.2	19.7	15.3	5.5	80
41	121.2	20.9	15.2	5.3	09	121.6	21.4	15.6	5.5	30
81	128.8	24.0	16.3	5.1	10	127.7	24.3	16.7	5.4	69
35	133.5	26.2	16.7	5.1	11	135.7	28.3	18.1	6.4	25
87	139.1	29.5	17.7	5.5	12	137.0	29.7	18.0	6.0	57
48	141.2	30.1	17.5	5.3	13	143.4	33.7	19.2	6.0	29
41	146.2	33.8	18.6	5.3	14	144.3	36.1	19.8	6.1	34
52	151.9	39.2	19.8	5.5	15	149.2	41.6	21.6	6.7	42
46	157.9	43.3	21.1	5.0	16	151.2	43.4	21.8	6.9	44
53	157.9	46.0	21.8	5.4	17	150.8	42.9	21.6	7.3	18
76	161.3	47.9	22.3	5.6	18	150.5	45.2	22.5	7.3	46
37	161.4	50.4	22.9	5.8	19	149.1	43.0	21.5	5.4	10
181	163.0	49.7	23.1	5.7	20-25	152.2	45.0	22.4	6.1	114
104	163.7	51.5	23.7	5.5	25-30	150.8	44.9	22.1	6.4	128
88	163.5	50.8	23.6	5.4	30-35	150.7	45.6	22.3	6.5	114
111	164.9	51.7	23.5	5.4	35-40	150.6	44.8	22.9	6.4	113
95	163.2	50.8	23.3	5.7	40-45	150.6	44.1	22.4	6.3	96
93	163.7	51.3	23.0	$5 i 6$	45-50	150.6	43.8	22.2	6.3	65
72	163.7	50.6	23.1	5.8	50-55	150.4	43.5	22.0	6.4	55
46	163.5	50.4	23.5	5.8	55-60	150.2	43-3	22.8	6.4	31
99	163.2	50.0	22.2	5.6	≥ 60	149-0	42.4	21.7	6.1	57

nNmb - mean anthropometric measurements by age and sex - west bengal

\#	$\begin{gathered} \text { Egident } \\ \text { (cen } \end{gathered}$	Wertet (ke)			480 in yenfa	$\begin{gathered} \text { Hotebt } \\ (\mathrm{cal}) \end{gathered}$	(x.ght			u
51	72.6	7.4	12.1	6.1	01	71.6	7.1	11.9	6.2	35
48	81.1	9.3	12.9	6.4	02	79.4	8.8	12.4	6.4	41
46	90.2	11.3	13.4	5.8	03	86.4	10.3	13.1	6.7	46
43	93.0	12.1	13.6	6.3	$0 \cdot$	92.0	11.4	13.4	6.9	20
56	100.6	13.7	13.7	5.3	09	98.5	12.6	13.6	5.9	41
49	105.1	14.7	13.7	4.8	06	104.1	14.2	14.0	5.9	4
58	110.9	16.2	14.1	4.6	07	109.3	15.3	14.0	4.9	40
37	116.3	17.6	14.3	4.4	08	114.7	17.5	74.7	4.9	So
51	120.9	19.8	25.0	4.5	09	119.9	19.0	15.0	+. 5	44
45	124.4	- 20.9	15.6	4.5	10	123.5	20.6	15.7	5.3	45
35.	129.2	22.8	15.9	4.0	11	130.5	23.8	16.5	5.1	47
42	133.2	24.9	16.6	4.4	12	136.3	26.9	17.3	5.4	59
36	136.3	26.7	16.8	4.3	13	140.9	30.1	18.1	6.0	30
35	143.5	30.4	17.9	4.3	14	142.7	32.5	19.2	7.1	36
46	+47.4	32.9	18.6	4.4	15	146.0	35.8	20.3	7.9	30
31	156.6	40.0	20.4	4.8	16	148.1	35.8	20.0	6.7	20
30	157.6	40.7	20.6	4.6	17	150.3	40.3	21.2	9.4	16
47	160.6	44.8	22.0	4.9	18	148.4	41.0	22.0	9.9	36
37	157.9	43.7	41.7	4.9	19	149.1	39.7	20.9	7.9	30
82	163.0	47.3	23.0	5.0	20-25	149.7	41.2	21.7	8.1	54
40	161.8	46.5	23.2	4.6	25-30	142.8	40.7	24.3	7.7	93
48	161.2	47.0	23.3	4.9	$30-35$	147.6	39.3	21.5	7.9	74
77	161.0	47.3	2).4	5.1	35-40	147.6	38.7	23.1	7.2	104
76	160.6	45.2	22,8	4.7	40-45	149.0	40.7	\$7.6	7.9	56
73	160.7	45.9	22.8	4.9	45-30	146.5	40.6	22.2	9.2	43
47	161.4	45.5	22.'4	4.7	50-53	144.5	36.1	21.1	7.2	20
31	160.8	43.9	21.8	4.3	55-60	146.4	37.2	21.0	7.6	13
23	158.7	42.6	21.4	5.0	$\geqslant 60$	146.4	36.6	20.4	6.5	36

N	Height (cm)	MALES Weight (kg)	```Arm circum- ference (cm)```	```Skinfold at Triceps (mm)```	Age in years	Height (cm)	F EMALES			
							Weight (kg)	```Arm circum- ference (cm)```	```Skinfold at Tricepe (mm)```	x
10	72.3	8.2	13.2	7.4	01	66.9	6.3	10.8	6.3	9
11	76.6	9.3	13.2	8.6	02	76.6	8.3	12.4	7.6	11
12	84.7	10.7	13.1	7.3	03	80.5	9.7	12.9	7.7	18
I8	93.8	13.1	14.0	8.1	04	89.2	12.0	14.5	8.6	10
8	96.3	13.2	13.2	6.6	05	92.7	12.9	13.9	7.3	10
24	104. 6	15.5	14.4	7.2	06	97.6	13.1	14.0	7.3	9
17	105.5	15.4	14.2	6.1	07	104.7	14.4	14.1	6.7	14
15	118.1	19.6	15.0	6.0	08	114.0	18.3	15.1	7.7	14
12	122.3	21.6	15.6	5.8	09	119.3	20.0	15.1	6.8	13
24	124.0	21.9	15.3	5.8	10	123.7	21.7	16.2	7.4	11
13	128.4	23.6	16.4	6.3	11	136.6	29.0	17.9	7.4	6
29	137.0	27.1	17.1	6.5	12	138.3	28.2	17.8	8.0	22
15	139.8	29.5	17.5	6.5	13	141.9	33.0	19.9	11.6	7
9	144.9	37.0	20.3	9.5	14	148.2	36.7	20.6	10.8	9
9	159.5	45.5	21.2	7.7	15	150.5	40.8	22.6	10.9	7
8	158.8	42.7	21.5	7.6	16	151.0	44.5	22.8	14.5	7
12	159.2	45.9	21.7	7.0	17	147.7	46.3	23.9	15.6	10
23	161.1	45.2	22.5	7.2	18	152.6	44.8	22.2	11.1	9
15	162.7	49.3	23.3	6.7	19	143.0	40.0	22.4	11.0	1
47	162.7	49.2	23.6	7.1	20-25	149.9	42.6	23.0	11.1	27
28	162.8	50.7	24.1	6.6	25-30	151.0	45.2	23.2	12.1	31
25	163.7	51.9	24.0	8.2	30-35	149.8	40.9	22.3	9.9	19
22	161.6	49.5	24.1	6.6	35-40	151.5	44.7	22.7	9.6	23
21	162.3	50.0	23.6	5.7	40-45	147.3	42.3	23.2	11.0	23
15	162.4	48.4	23.9	6.5	45-50	149.1	40.1	22.6	9.8	24
21	162.8	51.1	23. 4	6.7	50-55	149.3	44.8	23.4	11.9	13
3	165.8	51.0	24.2	5.5	55-60	146.7	42.4	23.3	11.9	10
31	161.2	48. 1	22.9	7.0	≥ 60	146.2	38.6	22.0	10.3	24

ANNEXURE-III
NNMB - Percent Distribution of Pre-school children according to

STATE	Normal	Degree of undernutrition		
		Mild	Moderate	Severe
KERAL	4.5	29.9	52.9	12.7
A				
TAMIL	3.1	24.8	57.4	14.7
KARNATA	4.4	22.1	54.9	18.6
ANDHRA	3.7	18.5	54.0	23.8
MAHARASHT	2.7	24.3	55.9	17.1
$\stackrel{\text { GUJJARA }}{ }$	3.4	17.2	51.2	28.2
MADHYA	3.8	23.7	53.2	19.3
donnect	1.4	17.5	58.1	23.0
DENTAT UTTAR	7.1	19.2	46.5	27.3
PRADESH				
ALL STATES	3.8	21.9	53.8	20.5

NORMAL: $\geq 90 \%$ of standard ${ }^{+}$weight for age
MILD : 75-90
MODERATE: $60-\mathbf{- d o}$
SEVERE $: \angle 60$
+NELSON
NNMB - Percent distribution of pre-school children according to Dugdale Index (weight/height ${ }^{1.6}$)

STATE	Dugdale Index		
	≥ 90	$70-90$	$\angle 70$
KERALA	25.6	70.6	3.8
TAMIL NADU	30.4	59.8	9.8
KARNATAKA	25.6	71.7	2.7
ANDHRA PRADESH	32.9	62.0	5.1
MAHARASHTRA	46.6	52.5	0.8
GUJARAT	23.4	68.0	8.6
MADHYA PRADESH	43.5	53.3	3.2
WEST BENGAL	14.7	77.1	$\mathbf{8 . 2}$
UTTAR PRADESH	36.4	54.5	$\mathbf{9 . 1}$
ALL STATES	31.0	63.3	5.7

NNMB - Percent distribution of pre-school children according to Weight/Height ${ }^{2 \times 100}$

		Weight/height ${ }^{2 \times 100}$	
STATE	≥ 0.15	$0.13-0.15$	$\angle 0.13$
KERALA	34.6	46.1	19.3
TAMIL NADU	42.7	41.2	16.2
KARNATAKA	46.0	48.7	5.3
ANDERA PRADESH	45.7	47.8	6.4
HAHARASTRA	63.6	31.4	4.1
GUJARAT	39.7	47.9	12.5
MADHYA PRADESH	65.2	31.3	3.6
WEST BENGAL	18.1	52.3	29.6
UTTAR PRADESH	36.5	41.4	12.2
ALL STATES	44.7	43.1	12.1

(Corrections)

Page	Line	For	Head as
1	2nd para 1st line	end of 1974	end of August 1974
2	2nd para 3rd line	millets was	millets in group A was
4	2nd para 5th line	Karnataka and Madhya Pradesh.	Karnataka, Madhya Pradesh and Andhra Pradesh.
4	2nd para 9th line	followed with	followed by
4	Last line	Tamil Nadu and Gujarat	Andhra Pradesh and Maharastra
5	2nd line	$\begin{aligned} & 2260 \text { arid } \\ & 2600 \end{aligned}$	2320 and I960
5	From below 8th line	lowest in Kerala	lowest in Kerala and Tamil Nadu
6	From below 6th line	(26\%) and Gujarat	(55\%) and West Bengal
6	From below 7 th line	(1.4\%)	(19\%)
11	4th line	forty four (44\%)	forty five (45\%)
Table-4	Title	vitamin A	vitamin A (ug)
Table-5	1st row 8th col.	16.3	17.1
Table-5	8th row last col.	19.4	29.4

[^0]: A : Percapita income of less than Re.1/- per day
 B : Percapita income of Re.1/- to Rs. 2/- per day
 C: Percapita income of Rs.2/- to Rs. 5/- per day.

[^1]: Protein Inadequacy : Intake of Protein/CU/day being lest than 37.5 g .
 Calorie Inadequacy : Intake of Calories/CU/day being lets than 2130
 Protein Adequacy
 CA : Calorie Adequacy

